Maciej Wielgosz

Maciej Wielgosz

AGH, Kraków, Poland

Maciej Wielgosz


Research interests of Dr. Maciej Wielgosz are within Artificial Intelligence, Image Processing, Anomaly Detection, Reinforcement Learning, and Embedded Machine Learning. He completed his M.Sc. from the Faculty of Electrical Engineering, Automatics, Computer Science, and Electronics at the AGH University of Science and Technology in 2005. He continued his studies at the same institution, obtaining his Ph.D. from the Department of Electronics in 2010 with honors. He was awarded the Habilitation Degree in 2021 in the discipline of information and communication technology for his thematically related cycle of scientific articles titled "Design of low-latency architectures for machine learning algorithms." Over the years, Dr. Wielgosz has held positions in various research institutions. He has been associated with the NIBIO Norwegian Institute of Bioeconomy Research since September 2022 as a Machine Learning Researcher, where he focuses on ML solutions for Point Cloud, 3D data, and images in Forestry. Prior to that, he worked at the Centre de Visió per Computador (CVC) at Universitat Autònoma de Barcelona, focusing on "Adversarial Cases for Autonomous Vehicles (ARCANE).” Furthermore, since 2010, he has been an Assistant Professor at the AGH University of Science and Technology. Dr. Wielgosz's expertise has also been sought by international organizations such as the European Organization for Nuclear Research (CERN), where he worked on detecting anomalous behavior of LHC superconducting magnets. He has also collaborated with Cadence Design Systems, NTNU University of Science and Technology, and the Department of Telematics in Trondheim, Norway.

Description of the general focus of the symposium "Integrating Spiking Neural Networks in Neurobiology and Computer Science"

The symposium aims to showcase the latest advancements and foster discussions at the intersection of neurobiology and computer science, emphasizing the development and understanding of neural networks.  

Objectives are:  

  • To explore the complex processes of synaptic activity and neuronal communication through advanced technologies like multi-electrode array (MEA) recordings.  
  • To discuss the advancements and challenges in Spiking Neural Networks (SNNs) as a bridge between biological neural systems and artificial intelligence.  
  • To address the challenges in training biologically plausible artificial neural networks and explore strategies to develop models that closely mimic animal brain processes.  
  • To provide a platform for early-career researchers to present their findings and engage with a diverse audience of experts in neurobiology, computer science, and related fields.  

Key topics will include:  

  • The role of advanced recording technologies in understanding neural dynamics.  
  • The development and potential of SNNs in mimicking biological neural processes.  
  • The challenges and future directions in training biologically accurate neural network models.  

The symposium is particularly relevant given the rapid advancements in both neurobiology and computer science. Integrating these disciplines is crucial for developing more accurate models of brain function, which has significant implications for understanding neural disorders and advancing AI technology. Additionally, the symposium will serve as a critical platform for interdisciplinary collaboration and knowledge exchange, fostering innovation in these fields.  

The symposium is designed for scientists, researchers, and students in neurobiology, computer science, artificial intelligence, and related fields. It will also be beneficial for early- career researchers looking for an opportunity to present their work and engage with established experts.  

We believe that this symposium will be a valuable addition to the Neuronus conference offering attendees a comprehensive insight into the exciting and rapidly evolving field of neural network research.

Talk: "Integrative Approaches in Spiking Neural Networks: Bridging Machine Learning, Computer Science, and Neurobiology "

Spiking Neural Networks (SNNs) stand at the intersection of machine learning (ML), computer science (CS), and neurobiology, promising to revolutionize computational paradigms by mimicking the temporal dynamics of biological neural systems. This presentation explores the landscape of SNNs, emphasizing the synthesis of concepts from ML, such as learning algorithms and frameworks like BindsNET and SpikeJelly, with the structural and functional insights from neurobiology. We discuss the role of computer science in developing simulation tools like NEST, which enable the mapping of neural architectures. The contribution of neurobiology is underscored by providing biological fidelity to models, influencing both architecture and function. Moreover, we delve into the emerging field of neuromorphic engineering (EE), which aims to translate the computational efficiency of SNNs into hardware implementations. By converging these fields, SNNs hold the potential for creating more efficient, adaptive, and biologically realistic computing systems. The presentation concludes with a discussion on the current challenges and future directions in SNN research, outlining a collaborative path forward for these intertwined disciplines. 

Our partners
The Neuronus Neuroscience Forum website uses cookies in accordance with the Privacy Policy. We ask for your consent to use anonymous data to improve your experience of our website. Privacy Policy